Application and Design

Iris Dampers are unique because they provide both a tool to control and measure airflow. The blade configuration always keeps the flow in the middle of the duct, reducing both turbulence and noise. Built-in static pressure measuring ports on each side of the damper allow for direct measurement of pressure drop, which can be converted to airflow and/or velocity. To adjust airflow simply position the calibrated control lever.

- Precise airflow measurement
- Accurate air balancing
- Single station measurement and control
- Quiet by design
- Galvanized steel construction
- Fully retractable blades for duct cleaning
- EPDM gasket for leakproof, airtight duct design

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Ød Pipe Diameter</th>
<th>ØD Overall Diameter</th>
<th>A</th>
<th>L</th>
<th>Weight lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.89”</td>
<td>6.5”</td>
<td>1.2”</td>
<td>4.33”</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>4.88”</td>
<td>7.4”</td>
<td>1.2”</td>
<td>4.33”</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>5.86”</td>
<td>9”</td>
<td>1.2”</td>
<td>4.33”</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>7.83”</td>
<td>11.2”</td>
<td>1.2”</td>
<td>4.33”</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>9.80”</td>
<td>13.2”</td>
<td>1.6”</td>
<td>5.2”</td>
<td>4.6</td>
</tr>
</tbody>
</table>
The Iris damper features two measuring ports. One is on each side of the aperture. A manometer connected across the ports will measure differential pressure (pressure drop). If you know the orifice configuration and the pressure drop, airflow (CFM) can be calculated.

The formula is:
\[
\text{Flow(L/sec)} = K \times \sqrt{\text{pressure drop (pascals)}}
\]

K is a constant derived experimentally from the orifice configuration and cataloged in the K table below.

Follow these steps:
1. Find the damper settings along the outside edge of the damper to the right of the measurement ports. **The Damper Setting is __________**
2. Measure the pressure drop - connect a manometer to both measurement ports. **Pressure Drop = __________**
 If your instrument is calibrated in pascals then you may proceed with the calculations, if not then convert InWC into pascals. **1 pascal = .004 InWC. __________ InWC / .004 = __________ pa**
3. Look up K in the table below. Enter the table with the damper diameter and go right to the damper setting. **K = __________**
4. Substitute known values into the equation: \((K) \text{ ________} \times (\sqrt{\text{Press. drop (pa)})} = \text{Flow (liters/sec)}\)
5. **Flow (l/s) __________ x 2.119 CFM/(l/s) = __________ CFM**

Alternatively: www.youngregulator.com/Iris as a link to a spreadsheet that automates these calculations.

<table>
<thead>
<tr>
<th>mm</th>
<th>Inches</th>
<th>Orifice Setting</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4</td>
<td>______________</td>
<td>10.4</td>
<td>7.9</td>
<td>7.5</td>
<td>6.6</td>
<td>6.0</td>
<td>5.2</td>
<td>4.5</td>
<td>3.8</td>
<td>3.4</td>
<td>2.9</td>
<td>2.5</td>
<td>2.1</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>125</td>
<td>5</td>
<td>______________</td>
<td>13.8</td>
<td>10.4</td>
<td>8.8</td>
<td>7.3</td>
<td>6.5</td>
<td>5.5</td>
<td>4.7</td>
<td>4.0</td>
<td>3.5</td>
<td>3.1</td>
<td>2.2</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>______________</td>
<td>24.1</td>
<td>20.0</td>
<td>16.5</td>
<td>14.9</td>
<td>13.4</td>
<td>12.0</td>
<td>11.0</td>
<td>10.0</td>
<td>8.9</td>
<td>7.9</td>
<td>7.9</td>
<td>6.9</td>
<td>6.0</td>
<td>4.4</td>
<td>3.7</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>______________</td>
<td>44.2</td>
<td>36.6</td>
<td>30.9</td>
<td>26.9</td>
<td>23.2</td>
<td>20.6</td>
<td>18.2</td>
<td>15.9</td>
<td>14.0</td>
<td>12.3</td>
<td>11.0</td>
<td>11.0</td>
<td>9.6</td>
<td>6.5</td>
<td>5.0</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>______________</td>
<td>64.4</td>
<td>53.5</td>
<td>45.6</td>
<td>41.8</td>
<td>38.7</td>
<td>34.5</td>
<td>30.7</td>
<td>27.3</td>
<td>24.1</td>
<td>21.4</td>
<td>18.4</td>
<td>15.8</td>
<td>12.8</td>
<td>10.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Performance Curves

4" Iris

5" Iris

6" Iris

8" Iris

10" Iris

CFM

Pressure Drop in WC

q (l/s)

CFM

L_{1/2} (dB[A])